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THE DYNAMICS OF SYSTEMS WITH UNILATERAL CONSTRAINTS* 

A.P. IVANOV and A.P. MARKEEV 

The possibility of extending the canonical formalism to a system with 
ideal unilateral constraints is demonstrated. The problem of the motion 
of a heavy material point in a vertical plane not below a certain smooth 
curve is considered as an illustration. 

1. We consider a mechanical system M with Lagrange functions of the form 

L&n.T=+& %j (409 9) Qi’Qj’ 

i. j=o 

n = l-I bl, 9, q, q = (Ql, . . . 7 Q”) 

(1.1) 

and an ideal unilateral constraint qo> 0. In the intervals between impacts on the constraint, 
the motion of the system is described by the equations /l/ 

d aL BL 
dtdq,.-a4o= FL% &?++o (k=l,..., n) 

k k 

(1.2) 

where F, is the reaction of the stressed constraint; F, = 0 when q. # 0. 
Until recently the investigation of systems with unilateral constraints was reduced to 

examining system (1.2) in finite time intervals between impacts and to "fitting" the boundary 
conditions at the ends of these intervals (see /2/, for example). The equations of motion 
of the system M in an arbitrary time interval are obtained in /3/ and the possibilities are 
examined for applying these equations, which have the Routh form, to the solution of certain 
problems in mechanics. 

The purpose of this paper is to extend the canonical formalism to a system with ideal 
unilateral constraints, which will enable the developed methods of Hamiltonian mechanics to 
be used to investigate them. 

We will replace the generalized coordinates in the system M by means of the formulas 

qo = Qo, qk=ffk(Qo,Q), J=det -$$- #o n II 
cp=(c~l,....,‘~n)tQ=(Q~,...tQn) 

(1.31 

where we select the functions mk so that the relationship A,,,,, s O(n = 1, . . ..n) is satisfied 
in the kinetic energy expressions in the new coordinates 

T+g 4j (Qo* Q) Qt’Qj 

i. j-0 

Since 

these relationships can be written in the form of the equations 

which are a homogeneous set of linear equations in 

tj = Uoj + k"tjs (j=l,...,n) 
I=, 

whose determinant is different from zero because of (1.3). Therefore, zj = 0 (j = 1, . . ., n), i.e. 
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The determinant of the linear system (1.4) in dvJfX& is the principal minor of the 
kinetic energy matrix T; consequently, it is different from zero and system (1.4) is solvable 
for the derivatives &pJOQo. Setting 

‘pi ICJpaO = Qi (i = 1, , I sy n) (1.5) 

we formulate the Cauchy problem (l-4), (1.5) for the functions rpi, in which Q. plays the part 

of the independent variable while Qi are the initial conditions. Since the Jacobian J equals 
one for Q. = 0 because of (1.5), the condition of reversibility of the substitution (1.3) 
is satisfied at least fox sufficiently small values of Qg. 

Furthermore, we shall assume that the substitution of (1.3) into system (1.1) is already 
completed and a,,,,~ 0 (m = i, . . ..n). Then the first equation in (1.2) has the following form 
for qO=qo’ ==O: 

Since a,,,>@, then following il/, we obtain that 

(1.7) 

We determine the auxiliary system M * by using the Lagrange function 
L(/ p. i_qrqa',~',d) and the generalized force (1.7). 

The following relationships 

Qo (Ef Ii i Qg* (If I* 9 (t) = 9* (G (1.8) 

are satisfied for the trajectories Q (t) 1: (go @A q (0) and Q* (t) = (PO M, q* 0)) of swmns M 
and M*. 

In fact, for gO*>O we have Z*=Z and the trajectories Q(t) and Q*(1) coincide. 
Because dL*fdg;, dL*fdg and &WC?@ are even while aZCldgo is an odd function in gp, for go* <Q 
the equations of motion of systemM*go over into (1.2) by means of the substitution ge*-c-gpe, 
and the relations (1.8) axe also satisfied. 

The quantities &W&J' remain continuous on the curve Q(t) under impact /4/. The kinetic 
energy T is also continuous because the constrain is ideal. Therefore, because ogrn" 0, the 
quantity 1 PO’(t)/ is also continuous. In turn, the curve Q*(t) in an extremal of the action 
functional 

1, 

s Z' (Q' (0, Q“ f% r)dt 
tl 

consequently, q**'(t) and q*'(1) are continuous at paints of this curve. After impact, the 
tangential vectors of the trajectories Q(l) and Q*(()are therefore symmetric relative to the 
plane go= 0 and relations (1.8) remain valid, which proves their corxactness during the whole 
time of the motion. 

Setting 

we write the equations of motion of system M*inthe cananical form 

dq, aH 
dt=-’ ds$ 

where it is necessary to set 

in conformity with (1.6) ana (1.7). 
The canonical system (1.9) r (1.10) determines the motion of system (1.1) uniquely in an 

arbitrary time interval; in particular, the motion for a stressed constraint occurs under the 
condition 

d&&g 1&?&o ;;a 0 

2. As an illustration, we consider the problem of the motion of a material point in a 
vertical plane not below a smooth curve y =!(I). We select the measurement units in such a 
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way that the mass and weight of the point is unity, We take q0 = y -f(5). 4, = .z as be 
generalized coordinates. The Lagrange function has the form 

A= 'iats'1 i- Y") - y="/a IP1'* + If'(Plf91' f @‘I*) - f(q1) - PO> go > 0 (2.1) 

We make the reducing substitution (1.3) : q,, = QO, q1 = q(QorQl) where cp is the solution 
of the Cauchy problem 

-++-WP). ~IP.-o=QI, G=+ (2.3) 

In the new variables the Lagrangean (2.1) takes the form 

The equations of motion of the auxiliary system M* havethe canonical form (1.9), (1.10) 
with Hamilton functions of the form 

R=r ~~~+~~~~~~{~)+lQ~l (2.3) 

s=~(lQoLQ& *I=$- 
We will examine certain special cases of the motion. 
1) For Q. = PO = 0, motion of the point along a curve occurs. Here cp = 9 = QI, ‘~1 = 

$1 = 1 and the Hamiltonian (2.3) has the form 

Hlo,~,=?'& (QI) P? i- f(Qr) 

The condition for motion of a point along a curve appears thus: 

aH/aQo jQOm+, = E 11 + EzP,9f"(Q,)l = E"*(cosa + xu2) > 0 

where x and CL are the curvature of the curve and the angle it makes with the abscissa axis, 
and u is the magnitude of the point velocity. 

2) If f'(.r,)= 0, the system allows a motion for which the point periodically jumps up 
above the curve, while its abscissa is constant and equal to x0. Corresponding particular 
solutions of (1.9), fI..lO) with Hamiltonian (2.3) have the following form for ---T/Z < t-s 712 

Q. = ‘i,t [2 (2h)‘/z - it 11, P, = (Zh)‘/: - 1 t 1, Q1 = x,,, P, = 0 (2.1) 

where h is the height of the jump upward, and 7 = 4(2h)'l* is the period of the motion under 
consideration (i.e., the time interval between the k-th and ,k + 2-th collisions, k = 1, 2,. . ,). 

Let us investigate the orbital stability of these periodic motions, i.e., the stability 
of the oribital parameter h and the variables QxV PI to perturbations. To do this we pass 
from the variables Qo, P, over to the "action-angle" variables (, UT by meansof the formulas 

(2.5) 

for -n<w <Jr; the substitution is Zn-periodic in w. 
The solutions (2.4) take the form 

I=?,, w+“(+zo)-“*6+wo, Q1=30, P,=O 

We will describe the perturbed motion by means of the variables r, 5, q, defined by the 
relationships 

r=I - I,, E = Qt - *ot q = P, 
By virtue of (2.5) the variables IQ@ f and P, are analytic in r for I,#O, consequently, 

the Hamilton function (2.3) will be a smooth function of the perturbations. The presence of 
the quantitylQo /in the equations results solely in the non-differentiabilityoftheHamiltonian 
with respect to the angular variable w. 

Note that the smoothness mentioned is achieved on the right sides of the perturbed-motion 
equations because of the introduction of the "action-angle" variables and is therefore due 
to the canonical form of the equations of motion. For the Routh equations that underlie 
the method used in /3/, there is no such smoothness relative to the perturbation of the oribtal 
parameter. 

The regular nature of the perturbed motion Hamiltonian enables the stability of the 
periodic solution to be investigated by known algorithms 15, 6,'. 

As a result of such an investigation, it was found that the stability domain has the form 

0 < k < 'fa in a linear approximation, where the quantity k = l/J” (s,)(3/,nZ,)‘~~ is the ratio of 
the height of the upward jump in the periodic solution and the radius of curvature of the 
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curve y ids f (5) at the point x0. 

For k = V8 the characteristic exponents h,and X2 of the linearized system of perturbed- 
motion equations are related to the third order resonance relationship h, = 3x,. Calculations 
show that if f" jzOf#O here f then the periodic motion under investigation is unstable. 

For the remaining values of k in the interval (o,E/g) the solution of the stability 
question depends on the parameters 

nor k f =I, (there is no fourth-order resonance hl = 4&)* 
periodic salt&ions under consideration hold in the general case 
normal form, 

orbital stability of the 
of non-degeneracy of the 

In particular, calculations perfoxmed for the parabola (x* =x2 = 0) and the sinusoid 
(Xl = 0, X& = -1) show that the solutions (2.4) are stable for these curves for all. values 
k in the interval (O,V,). 
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SOME CONDITIONS FOR THE EXISTENCE AND STABILITY OF PERIODIC OSCILLATIONS 
IN NON~L~N~~ NOB-AUTONOMOUS H~~~~LT~N~AN SYSTEMS* 

A.A. ZEVIN 

The sufficient conditions for the existence and uniqueness of periodic 
solutions are obtained for non-autonomous Hamiltonian systems by the 
method of continuation with respect to the parameter /l/ (similar results 
were established for certain vector equations by other methods in /2, 3./I. 
Using the theorem on the directed width of stability regions /4J, stabili%y 
criteria to a first approximation of these solutions are obtained. The 
effect of small dissipative forces on stability is investigated. Systems 
axe considered in which some of the general.ized coordinates are angular. 
The conditions for the existence, uniqueness, and stability are obtained, 
ds well as the upper bounds of solutions that correspond to periodic 
rotational motions of the angular coordinates with any preassigned average 
velocities that axe multiples of the perturbing effect. The periodic 
oscillatory and rotational motions of two coupled pendulums are considered, 
as an example. 

1. We consider the system 

(1.1) 

where xx1 . , ., z,, are the generalized coordinates, s+,+~, . . ..s. are the momenta, anb the 

Hamiltonian function H(zl,...,sz,, wt) is doubly differentiable with respect to tg and &G- 
periodic in ot. 
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