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THE DYNAMICS OF SYSTEMS WITH UNILATERAL CONSTRAINTS”

A.P. IVANOV and A.P. MARKEEV

The possibility of extending the canonical formalism to a system with
ideal unilateral constraints is demonstrated. The problem of the motion
of a heavy material point in a vertical plane not below a certain smooth
curve is considered as an illustration.

1. We consider a mechanical system M with Lagrange functions of the form

1 n‘ N
L=T—H'T=TE‘1{5(%,Q)%Q§ (1.1)
i j=0

H=H(110'q'l),‘X=(¢h,.--v¢1n)

and an ideal unilateral constraint g, >> 0. In the intervals between impacts on the constraint,
the motion of the system is described by the equations /1l/

L O 2 20 (k=1,...,n) (1.2)
k

where F, is the reaction of the stressed constraint; F, =0 when g¢o5 0.

Until recently the investigation of systems with unilateral constraints was reduced to
examining system (1.2) in finite time intervals between impacts and to "fitting" the boundary
conditions at the ends of these intervals (see /2/, for example). The equations of motion
of the system M in an arbitrary time interval are obtained in /3/ and the possibilities are
examined for applying these equations, which have the Routh form, to the solution of certain
problems in mechanics.

The purpose of this paper is to extend the canonical formalism to a system with ideal
unilateral constraints, which will enable the developed methods of Hamiltonian mechanics to
be used to investigate them.

We will replace the generalized coordinates in the system M by means of the formulas

a
go="=0Q0 &= ¢x(Co, Q) J=detﬂ-{%-';&0 (1.3)
¢=(P1,-... 7¢n)vQ=(Qh cee s Q)
where we select the functions ¢, so that the relationship Ad¢,=0(m =1,...,n) is satisfied

in the kinetic energy expressions in the new coordinates

T=5 Y 400000

i, j=0

n o
o=} 5= 0
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these relationships can be written in the form of the equations

i n n
_ . L TR v I R 3@,-\) o9,
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Fi J=t

Since

which are a homogeneous set of linear equations in

n
R e, .
Ij=a0j+2aij'o_o—;— G=1,...,n)

=1

whose determinant is different from zero because of (1.3). Therefore, z; =0(G =1,...,n), i.e.
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n

R 2, ;
Y gr=—a 0w (G=1.....n) (1.4)

[Ty

The determinant of the linear system (1.4) in 09/8Q, is the principal minor of the
kinetic enerygy matrix T; conseguently, it is different from zerc and system {(1.4) is solvable
for the derivatives 09,/8Q,. Setting

@i lgwo = Q; (i=1,...,n) (1.5)

we formulate the Cauchy problem {(1.4), {1.5) for the functions ¢;, in which @, plays the part
of the independent variable while {; are the initial conditions. Since the Jacobian J eguals
cne for @, = @ because of {1.5), the condition of reversibility of the substitution (1.3}
is satisfied at least for sufficiently small values of @,.

Furthermore, we shall assume that the substitution of (1.3) into system (1.l) is already
completed and ag,=0 (m =1, ..., n). Then the first equation in (1.2) has the following form
for ¢, = ¢, = 0:

alL

aw{?o”‘“'a == Fy {1.6)

L-“-H

Since @y > U, then following /1/, we obtain that

_sr (1.7
Fo== max {0, e w==+o}

We determine the auxiliary system M* by using the Lagrange function L {gp.4q,4¢,,¢" 1) =
Lilgs 49, 495,¢,1 and the generalized force {1.7}.
The following relationships

o) = {g* M 1, q (&) =q* (1) (1.8)
are satisfied for the trajectories Q(f) = (g, (¢), g (t)) and Q* (&) = (g, (1), q* (£)) of systems M
and M*.

In fact, for g,*>0 we have L*=] and the trajectories Q( and Q*{) coincige.
Because 9L*/8g,, dL*/3g and dL%/ag are even while 4L%/3g, is an odd function in g, for g*<0
the equations of motion of systemM¥go over into {(1.2) by means of the substitution T~ —g,
and the relations {1.8) are also satisfied.

The guantities &7/9¢° remain continuous on the curve @ () under impact /4/. The kinetic
energy T is also continuous because the constrain is ideal. Therefore, because gy, =0, the

quantity |g, (| is also continuous. In turn, the curve Q*(?) in an extremal of the action
functional

4
(r@ o v 9a
&

consequently, ¢ (¢} and g* (4 are continuous at points of this curve. After impact, the
tangential vectors of the trajectories Q (4 and Q* () are therefore symmetric relative to the
plane ¢,=0 and relations (1.8) remain valid, which proves their correctness during the whole
time of the motion.
Setting

hi3
aL* . R .
pjﬁ:g{}zﬁ, | SO A N H oz E;' Pig; P
ety

we write the equations of motion of system M*in the canonical form

dg,  gH dp, 9H
-—dT=:3_pi’ —Z'E-“—“"-—-a—g! (l==0,1,...,n) (1.9)

where it is necessary to set

:2:4
9g0 |guent

= min {0, g—:f (1.10)

QQW+0}

in conformity with (1.8) and (1.7).

The canonical system (1.9), (1.10) determines the motion of system (1.1) uniquely in an
arbitrary time interval; in particular, the motion for a stressed constraint occurs under the
condition

df/dg, lemte > O

2. s an illustration, we consider the problem of the motion of a material point in a
vertical plane not below a smooth curve y = f(z). We select the measurement units in such a
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way that the mass and weight of the point is unity. We take g, =y —f(z). ¢ = as the
generalized coordinates. The Lagrange function has the form

L=E"+y ) —y=" @ + [ @0 + 0P — f@)—%  %>0 .0
We make the reducing substitution (1.3): g, =@, ¢ = ¢ (Qy, 1) where ¢ is the sclution
of the Cauchy problem

P ,

o =—C@® Olhm=0, G=ilrm (2.2)
In the new variables the Lagrangean (2.1) takes the form

. . .

B 0"+ e 00— 1O —Qn Emgr . =g

The equations of motion of the auxiliary system M™* have the canonical form (1.9), (1.10)
with Hamilton functions of the form

H = g P+ St P+ F(9) + 1 Qo (2.3
+=0(QL 0 =g

We will examine certain special cases of the motion.
1) For Q, = P, =0, motion of the point along a curve occurs. Here @ =P = Q, ¢ =
Y; =1 and the Hamiltonian (2.3) has the form

H |{Qumpemo == 12E (@1} P* -+ f(Q1)
The condition for motion of a peoint along a curve appears thus:

AHIBQ, lguemto = E [1 + E2B3" (Qn)] = E't (cos a + n®) = 0

where % and a are the curvature of the curve and the angle it makes with the abscissa axis,
and v is the magnitude of the point velocity.

2) If f'(xy) =0, the system allows a motion for which the point periodically jumps up
above the curve, while its abscissa is constant and equal to z, Corresponding particular
solutions of {(1.9), (1.10) with Hamiltonian (2.3) have the following form for —1/2 <t <2

Qo = Yot [2 (2RY/ — it |}, Pg = (2R)/: — [t ]|, Q1 = 2o, Py =0 (2.9

where k is the height of the jump upward, and 71 = 4 (2h)/* is the period of the motion under
consideration (i.e., the time interval between the k-th and k& + 2-th collisions, A =1,2,...).
Let us investigate the orbital stability of these periodic motions, i.e., the stability
of the oribital parameter % and the variables ¢, P, to perturbations. To do this we pass
from the variables @, F, over to the "action-angle" variables [/, v by meansof the formulas

Qo= 2 (% ' w@—|w)), Py =25z 1) (F~wl) 2.5)

for —n < w < n; the substitution is 2n-periodic in w.
The solutions (2.4) take the form

Ir::[g, w:—_?*(*?:;-fg)—‘ht-f‘Wm Q!:qu Pl'—'—‘:o

We will describe the perturbed motion by means of the variables r, & n, defined by the
relationships
P =[] Ty §=0Q;1 — %, 1=P;

By virtue of (2.5) the variables | @, | and P, are analytic in r for I;+ 0, consequently,
the Hamilton function (2.3) will be a smooth function of the perturbations. The presence of
the gquantity | Qe |in the equations results solely in the non-differentiability of the Hamiltonian
with respect to the angular variable w.

Note that the smoothness mentioned is achieved on the right sides of the perturbed-motion
equations because of the introduction of the "action-angle" variables and is therefore due
to the canonical form of the equations of motion. For the Routh equations that underlie
the method used in /3/, there is no such smoothness relative to the perturbation of the oribtal
parameter.

The regular naturxe of the perturbed motion Hamiltonian enables the stability of the
periodic solution to be investigated by known algorithms /5, 6/.

As a result of such an investigation, it was found that the stability domain has the form

0<<k<', in a linear approximation, where the quantity & = Y,f" (z,)(¥nuly)"* is the ratio of
the height of the upward jump in the periodic solution and the radius of curvature of the
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curve y = f(z) at the point z,.

For k = %y the characteristic exponents A, and A, of the linearized system of perturbed-
motion equations are related to the third order resonance relationship A; = 34;. Calculations

show that if iz == here, then the pericdic motion under investigation is unstable
snow that 7 % F U DeYe, then The perifaic motidn under investigation is .

For the remaining values of k in the interval (0,%,) the solution of the stability
gquestion depends on the parameters

(@) 1LY (a0
MTFEE T TP

For ks= Y, (there is no fourth-order resonance A, = 4A;}), orbital stability of the
pericdic solutions under consideration heold in the general case of non-degeneracy of the
normal form.

In particular, caloulations performed for the parabola (%; = %y == {) and the sinusoid

(%1 = 0, %, = —1) show that the solutions (2.4) are stable for these curves for all values of
k in the interval (0, Y,).
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SOME CONDITIONS FOR THE EXISTENCE AND STABILITY OF PERIODIC OSCILLATIONS
IN NON-LINEAR NON-AUTONOMOUS HAMILTONIAN SYSTEMS™

A.A, ZEVIN

The sufficient conditions for the existence and unigueness of periodic
solutions are obtained for non~autonomous Hamiltonian systams by the
method of continuation with respect to the parameter /1/ {similar zresults
were established for certain vector eguations by other methods in /2, 3/).
Using the theorem on the directed width of stability regions /4/, stability
criteria to a I.LI'SL appIOlea‘ClOH of these SO.LuthBS are DDY,EU.DEG. The
effect of small dissipative forces on stability is investigated. Systems
are considered in which some of the generalized coordinates are angular.
The conditions for the existence, unigueness, and stability are obtained,
as well as the upper bounds of sclutions that correspond to periodic
rotational motions of the angular coordinates with any preassigned average
velocities that are multiples of the perturbing effect. The periodic
oscillatory and rotational motions of two coupled pendulums are considered,
as an example.

1. We consider the system

2" = s Tupe= ———, i==1, . n {1.1)
2220 azi
where z;, ... %, are the generalized cocrdinates ZTuagy + » 3 Tpy are the momenta, and the
Hamiltonian funetion H ix afy is doubl v Rifferenti&'le with resgpect to z; and pi3
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periodic in ef.




